Math 115
Winter 2017
Lecture 11

Use exponential rules to Simplify:

$$
\text { 1) } \begin{aligned}
&\left(x^{4}\right)^{3} \cdot x^{8} \\
&= x^{12} \cdot x^{8} \\
&= x^{20} \quad \text { Deg }=20 \\
& \text { Coed. }=1
\end{aligned}
$$

3) $\left(-2 x^{5}\right)^{3}$

$$
\begin{aligned}
& =(-2)^{3}\left(x^{5}\right)^{3} \\
& =-8 x^{15} \begin{array}{l}
\text { Monomial } \\
\text { Deg -15 } \\
\text { Coff }=-8
\end{array}
\end{aligned}
$$

2) $\frac{\left(x^{2}\right)^{5}}{\left(x^{3}\right)^{3}}=\frac{x^{10}}{x^{9}} \quad D_{\text {eg }:=1}$

$$
=x^{10-9}=x^{1}=x{ }_{\text {Mono. }}^{\text {Coot. }=1}
$$

4) $\left(\frac{2 x^{-3}}{y^{-5}}\right)^{4}$

$$
=\left(\frac{2 y^{5}}{x^{3}}\right)^{4}=\frac{2^{4}\left(y^{5}\right)^{4}}{\left(x^{3}\right)^{4}}
$$

$$
=\frac{16 y^{20}}{x^{12}} \text { mona } \begin{aligned}
& \text { Not al }
\end{aligned}
$$

5) $\left(-3 x^{6} y^{5}\right)^{2}$

Monomial
6) $\left(x^{4}\right)^{-3} \cdot x^{-5}$

$$
\begin{align*}
& =(-3)^{2}\left(x^{6}\right)^{2}\left(y^{5}\right)^{2} \quad \log _{=12}=12+10= \\
& =9 x^{12} y^{10} \quad \text { Coef. }=9
\end{align*}
$$

$$
\begin{aligned}
& =x^{-12} \cdot x^{-5}=x^{-17}=\frac{1}{x^{17}} \\
& \text { Nota } \\
& \text { Monomial }
\end{aligned}
$$

7) $\left(\frac{-5 x^{-2}}{y^{5}}\right)^{-3}$
8) $\left(\frac{2}{3}\right)^{0}-\left(\frac{1}{2}\right)^{-2}$

$$
\begin{aligned}
& =\left(\frac{-5}{x^{2} y^{5}}\right)^{-3}=\left(\frac{x^{2} y^{5}}{-5}\right)^{3} \begin{array}{l}
\text { Monomial }=6+15=21 \\
\text { Dos } \\
=\frac{x^{6} y^{15}}{-125}=1-z^{2} \\
=1-4 \\
=125
\end{array} x^{6} y^{15} \text { Coef. } \frac{-1}{125}=\begin{array}{l}
=3
\end{array}
\end{aligned}
$$

Write in S.N.:

$$
\text { (1) } 23 \underbrace{350000000}
$$

$$
=2.35 \times 10^{10}
$$

(2) 0.0000000000789

$$
=7.89 \times 10^{-11}
$$

\{write in expanded form (1) 2.5×10^{8} $=250,000,000$
(2) 1.75×10^{-5}

Simplify:
(1)

$$
\begin{aligned}
& \left(7.8 \times 10^{12}\right)\left(8.5 \times 10^{27}\right) \\
= & \underbrace{66.3} \times 10^{39}=6.63 \times 10^{7} \times 10^{39}=6.63 \times 10^{40}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{3.5 \times 10^{-18}}{7 \times 10^{14}}=.5 \times 10^{-32} & =5 \times 10^{-1} \times 10^{-32} \\
& =5 \times 10^{-33}
\end{aligned}
$$

Multiply $\dot{\varepsilon}$ Simplify:

$$
\begin{array}{r}
\text { 1) }\left(-7 x^{5}\right)\left(4 x^{3}\right)=-28 x^{5+3}=-28 x^{8} \\
\text { Monomial, Deg. }=8 \\
\text { Coff }=-28
\end{array}
$$

2) $\left(-8 x^{2} y^{6}\right)\left(-4 x^{3} y^{4}\right)$

Monomial

$$
=32 x^{2+3} y^{6+4}=32 x^{5} y^{10}
$$

$$
\text { Deg. }=5+10=15
$$

Distribute \& Simplify

$$
\text { coff. }=32
$$

$$
\text { 3) } \begin{aligned}
& -4 x\left(2 x^{2}-3 x+1\right)+8 x^{3}-13 x^{2} \\
= & -8 x^{3}+12 x^{2}-4 x+8 x^{3}-13 x^{2}=-x^{2}-4 x
\end{aligned}
$$

Binomial, Deg. 2, L.C. $=-1$

Foil غ Simplify

$$
\begin{aligned}
& \text { (1) }(5 x+3)(4 x-6) \\
& =20 x^{2}-30 x+12 x-18 \\
& =20 x^{2}-18 x-18
\end{aligned}\left\{\begin{array}{l}
\text { (2) }\left(3 x^{2}-1\right)\left(4 x^{2}-5\right) \\
=12 x^{4}-15 x^{2}-4 x^{2}+5 \\
=12 x^{4}-19 x^{2}+5 \text { const } 5
\end{array}\right.
$$

Trinomial, $D=2, L, C=20$, const. 18 Trinomial, $D=4, L, C .=12$

$$
\begin{aligned}
& \text { (3) }\left(4 x^{2}-5 y^{3}\right)\left(4 x^{2}+5 y^{3}\right) \\
& \left.=16 x^{4}+20 x^{2} y^{3}-20 x^{2} y^{5}-25 y^{6}\right\}=\left(x^{2}-4\right)\left(x^{2}+4\right) \\
& =16 x^{4}-25 y^{6} \\
& \text { Binomial, } \\
& \text { Deg. } 6, \text { L.C. }=-25=x^{4}-16 \\
& \text { Binomial } \\
& D=4 \\
& \text { Const. }-16 \quad \text { L.C. } 1
\end{aligned}
$$

Special Products:
(1)

$$
\begin{aligned}
&(A+B)^{2}=(A+B)(A+B) \\
&=A^{2}+A B+B A+B^{2} \\
&(A+B)^{2}=A^{2}+2 A B+B^{2} \\
&(x+6)^{2}=x^{2}+2 \cdot x \cdot 6+6^{2} \\
&=x^{2}+12 x+36 \\
&(3 x+5)^{2}=\frac{(3 x)^{2}+2(3 x)(5)+(5)^{2}}{} \\
&=9 x^{2}+30 x+25
\end{aligned}
$$

$$
\begin{aligned}
\left(4 x^{2}+3 y^{5}\right)^{2} & =\left(4 x^{2}\right)^{2}+2\left(4 x^{2}\right)\left(3 y^{5}\right)+\left(3 y^{5}\right)^{2} \\
& =\underbrace{16 x^{4}}+\underbrace{}_{\substack{D=7 \\
C=4 x^{2} y^{5}}}+\underbrace{C=9}_{\substack{D=10 \\
C=10 \\
C=24}}
\end{aligned}
$$

Deg. 10, L.C. 9 , Trinomial

$$
\begin{aligned}
& \left(5 x^{3}+2 x^{2}\right)^{2}=\left(5 x^{3}\right)^{2}+2\left(5 x^{3}\right)\left(2 x^{2}\right)+\left(2 x^{2}\right)^{2} \\
& =25 x^{6}+20 x^{5}+4 x^{4} \quad \text { Trinomial } \\
& \text { Deg. }=6, \text { L.C. }=25, \text { Constant }
\end{aligned}
$$

$$
\begin{aligned}
(A-B)^{2} & =(A-B)(A-B) \\
& =A^{2}-A B-A B+B^{2} \\
(A-B)^{2} & =A^{2}-2 A B+B^{2} \\
(x-9)^{2} & =(x)^{2}-2(x)(9)+(9)^{2} \\
& =x^{2}-18 x+81 \\
(2 x-10)^{2} & =(2 x)^{2}-2(2 x)(10)+(10)^{2} \\
& =4 x^{2}-40 x+100
\end{aligned}
$$

$$
\begin{aligned}
& \left(7 x^{4}-6\right)^{2}=\left(7 x^{4}\right)^{2}-2\left(7 x^{4}\right)(6)+(6)^{2} \\
& =49 x^{8}-84 x^{4}+36 \\
& \left(3 x^{5}-8 x^{2}\right)^{2}=\left(3 x^{5}\right)^{2}-2\left(3 x^{5}\right)\left(8 x^{2}\right)+\left(8 x^{2}\right)^{2} \\
& =9 x^{10}-48 x^{7}+64 x^{4} \\
& \begin{array}{r}
5 x-3 y \quad \text { find } A \\
A=S^{2} \quad \begin{array}{r}
A x-3 y \quad \begin{array}{r}
A \\
\hline
\end{array} \quad \begin{array}{r}
5 x-3 y)^{2}
\end{array}=(5 x)^{2}-2(5 x)(3 y)+\left(3 y y^{2}\right. \\
=25 x^{2}-30 x y+9 y^{2}
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
(A+B)(A-B) & =A^{2}-A B+A B-B^{2} \\
& =A^{2}-B^{2} \\
(x+5)(x-5) & =(x)^{2}-(5)^{2} \\
& =x^{2}-25 \\
(3 x-7)(3 x+7) & =(3 x)^{2}-(7)^{2} \\
& =9 x^{2}-49
\end{aligned}
$$

$$
\begin{aligned}
& (\underbrace{\left.4 x^{3}+10 y^{2}\right)\left(4 x^{3}-10 y^{2}\right)}_{\text {Conjugates }} \\
& =\left(4 x^{3}\right)^{2}-\left(10 y^{2}\right)^{2} \\
& =16 x^{6}-100 y^{4}
\end{aligned}
$$

find the area

$$
\begin{gathered}
A=L W \\
4 x^{3} y^{2}+5 x^{4} y^{3}
\end{gathered} \begin{aligned}
& 4 x^{3} y^{2}-5 x^{4} y^{3} \\
& A= \\
& \left(4 x^{3} y^{2}+5 x^{4} y^{3}\right) \\
& \left(4 x^{3} y^{2}-5 x^{4} y^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Polynomial }}{\text { Monomial }} \\
& \begin{aligned}
& \frac{10 x^{3}-6 x^{2}+4 x}{2 x}=\frac{50 x^{3}}{2 x}-\frac{36 x^{2}}{2 x}+\frac{4^{2} x}{2 x} \\
&=5 x^{2}-3 x^{1}+2 \\
&=5 x^{2}-3 x+2 \\
& \frac{28 x^{4} y^{3}-14 x^{2} y^{2}+7 x y}{7 x y}=\frac{28 x^{4} y^{3}}{7 x y}-\frac{14 x^{2} y^{2}}{7 x y}+\frac{7 x y}{7 x y} \\
&=4 x^{3} y^{2}-2 x y+1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{50 x^{6} y^{5}-10 x^{4} y^{3}+5 x^{2} y^{2}}{-5 x^{2} y^{2}} \\
& =\frac{50 x^{6} y^{5}}{-5 x^{2} y^{2}}-\frac{10 x^{4} y^{3}}{-5 x^{2} y^{2}}+\frac{5 x^{2} y^{2}}{-5 x^{2} y^{2}} \\
& =\underbrace{\substack{-1}}_{\begin{array}{l}
D=7 \\
C=-10
\end{array} \underbrace{-10 x^{4} y^{3}}+\underbrace{2 x^{2} y}-1} \underbrace{D=0}_{\text {Constant }}\} \begin{array}{l}
D=7 \\
L_{\text {L. } C .}=-10 \\
\text { Trinomial }
\end{array}
\end{aligned}
$$

$\frac{\text { Polynomial }}{\text { Binomial }} \quad \frac{x^{2}-5 x-6}{x+1}$
Long Division

$$
x x=x^{2}
$$

$$
x-6=-6 x
$$

$$
\begin{array}{r}
x+1 \begin{array}{rr}
& \begin{array}{rr}
x^{2}-5 x-6 \\
-\left(x^{2}+x\right. & -6
\end{array} \\
-6 x-6 \\
-(-6 x-6)
\end{array} \\
\text { Remainder } \rightarrow 0 \tag{array}
\end{array}
$$

$$
\begin{aligned}
& \frac{2 x^{3}-5 x^{2}+7 x-1}{x-1} \\
& x \quad 2 x^{2}=2 x^{3} \quad x-1 \sqrt{2 x^{3}-5 x^{2}+7 x-1} \\
& x-\frac{\left(2 x^{3}-2 x^{2}\right.}{-3 x=-3 x^{2}} \\
& x=\frac{-3 x^{2}+7 x-1}{-3 x^{2}+3 x} \\
& x=4 x \\
& \left.2 x^{2}-3 x+4+\frac{3}{x-1} \quad \text { Remainder } \rightarrow 3-4 x-4\right)
\end{aligned}
$$

$$
\begin{array}{cc}
\left.\begin{array}{c}
\frac{4 x^{3}-5 x^{2}+7 x+16}{x+1} 4 x^{2}-9 x+16 \\
\left.x+1 \sqrt{4 x^{3}-5 x^{2}+7 x+16}\right) \\
-\frac{\left(4 x^{3}+4 x^{2}\right.}{-9 x^{2}+7 x+16} \\
-\left(-9 x^{2}-9 x\right.
\end{array}\right) & x \sqrt{-9 x}=-9 x^{2} \\
\frac{16 x+16}{3} \\
4 x^{2}-9 x+16
\end{array}
$$

When we have missing terms:

$$
\begin{array}{ll}
\frac{x^{2}-30}{x-5}=\frac{x^{2}+0 x-30}{x-5} & x \boxed{x}=x^{2} \\
x - 5 \longdiv { x ^ { 2 } + 0 x - 3 0 } & x \boxed{5}=5 x \\
-\frac{\left(x^{2}-5 x-5 x-30\right.}{-(5 x-25)} & \\
\frac{\text { Rem. }-5}{x+5+\frac{-5}{x-5}}
\end{array}
$$

$$
\begin{aligned}
& \frac{2 x^{3}-7 x+4}{x+2}=\frac{2 x^{3}+0 x^{2}-7 x+4}{x+2} \\
& x+2 \sqrt{2 x^{3}+0 x^{2}-7 x+4} \\
& x+2 x^{2}=2 x^{3}-\frac{\left(2 x^{3}+4 x^{2}\right)}{-4 x^{2}-7 x+4} \\
& x-\frac{-4 x}{}=-4 x^{2}-\frac{\left(-4 x^{2}-8 x\right)}{x+4} \\
& x=x \quad \frac{-(x+2)}{2} \\
& 2 x^{2}-4 x+1+\frac{2}{x+2} \quad
\end{aligned}
$$

Due Tuesday:
SG 13 غ Those WP using system of linear equations

Expect a couple of Quizzes.

